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SUMMARY 

In this paper a new, highly accurate method called PH is presented for the numerical integration of partial 
differential equations. The method is applied for the solution of the one-dimensional diffusion equation. 
Upon integrating the equation within a subdomain of space and time using the prismoidal approximation, 
a three-point implicit scheme is obtained with a truncation error of order O(k4, h6), where k and h represent 
the time and space steps respectively. The method is stable under the condition s = ctk/h2 < S(6) ,  where 
the function S(6)  increases as the parameter S decreases from to negative values. In practice the method 
behaves as unconditionally stable upon choosing an appropriate value for 6. A new formula is also adopted 
for the implementation of a Neumann boundary condition, introducing a truncation error of order O(h4). 
Numerical solutions are obtained incorporating Dirichlet and Neumann boundary conditions. The results 
prove that our method is far more accurate than any other implicit or explicit method. 

INTRODUCTION 

The significance of the application of numerical schemes of high accuracy for the computational 
solution of problems governed by partial differential equations is well known. Thus a large 
number of numerical methods have been derived within the finite difference and finite element 
frameworks, particularly for the solution of problems in fluid mechanics and heat transfer. 

In constructing a numerical method, one encounters the question of stability and accuracy of 
the obtained numerical solutions. If a very restrictive stability condition has to be satisfied, the 
convergence of the numerical solution to the exact solution of a partial differential equation 
requires an enormous number of iterations for the complete integration of the problem. This 
has led to the development of various numerical schemes and their classification as methods of 
explicit and implicit type. The advantage of implicit schemes is that they are usually uncondition- 
ally stable, permitting the selection of an appropriate mesh which requires a reasonable number 
of iterations for the complete integration of the problem. To illustrate the basic characteristics 
of explicit and implicit schemes, we consider the one-dimensional diffusion equation, which 
incorporates the same dissipative behaviour as that of flow problems with significant viscous 
or heat conduction effects. The application of various numerical methods to the diffusion 
equation, the determination of the corresponding stability criterion and the estimation of the 
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order of the truncation error provide guidance in choosing the appropriate numerical algorithm 
for the various viscous and heat transfer flow problems. 

Let us consider the one-dimensional diffusion equation 

au a Z u  

at ax 
- = a  7, 

where u(x, t )  may represent a quantity such as momentum, vorticity, mass or heat. If u(x, t )  
represents the temperature as heat flows along an isolated rod of length 1 = 1, the constant tl 
is the thermal diffusivity and x and t are the space and time variables respectively. The function 
u(x, t )  may be subjected to initial and Dirichlet boundary conditions of the form 

4x9 t o )  = f(4, 40, t )  = C,(t), 4 1 ,  t )  = W), (2) 

where f ( x ) ,  Co(t) and C , ( t )  are known functions or constants. In the case where heat transfer is 
taking place from the end of the rod at x = 0, we can impose a Neumann boundary condition 
of the form 

where g(t)  may be a constant. The accuracy of the implementation of the boundary condition 
(3) drastically affects the accuracy of the obtained solution. 

Several explicit and implicit methods are extensively discussed in the books by Richtmyer 
and Morton,' Fletcher,' Ames3 and Patankar.4 The most popular explicit methods, listed in 
Table 7.1 of Reference 2 and in Table 8.1 of Reference 1 ,  are the forward time-centred space 
(FTCS) and three-level (3L) schemes, which are conditionally stable for s = ak/h' < 1 with a 
truncation error of order O(k', h'). Here k and h are the time and space steps respectively. The 
error can be reduced further to O(k', h4) using the more restrictive conditions s = & and s < 0.35 
respectively. The more accurate 3L fourth-order (3L-4TH) scheme is described by equation (4) 
below after substitution of the term L,,u;+' by L,,u;-' and putting b =  - 0 5  - y + 1/12s. On 
the other hand, the fully implicit scheme, the Crank-Nicolson scheme and the generalized 
three-level (3LFI) scheme are unconditionally stable with truncation errors which vary from 

Other higher-order schemes have been constructed within the Galerkin finite element method 
using linear approximating functions. Following Fletcher,' we incorporate various finite differ- 
ence and finite element three-level schemes in the equation 

O(k2, h') to O(k2, h4). 

where Aul+ ' = ul+ ' - ul and Lxxul = (u;+ - 2u; + ur- l)/h'. The mass operator M ,  is defined 
as M, = ( 6 , l  - 26, a}, so that 

M,Aul = hAul+ 1 + (1 - 26)Aul + 6Aul- 1. ( 5 )  

Various schemes are obtained for different values of the parameters 6, and y. However, the 
most accurate unconditionally stable schemes, having fourth-order accuracy O(k', h4), are those 
listed in Table I with y = 0 or 1. 

In this paper we develop a new numerical implicit method which we call PH. This method 
is stable for s d S(6), where the function S(6) increases continuously to infinity as the parameter 
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Table 1. Numerical schemes which are described by 
equation (4) and their corresponding parameters with 

y = O o r  1 

F D M 4 T H  (0, 1 ,  0) j - (~)  = 0.5 + Y - 1 / 1 2 ~  
FEM4TH (h j + ( ~ )  = 0.5 + y + 1/12s 
COMP (i3, 12, 12) 0.5 + Y 

S decreases from to negative values. Thus we have a stability region with a varying upper 
limit. On the other hand, the method is highly accurate, having a truncation error of order 
O(k4, h6). We also introduce a new approximation of higher accuracy for the implementation of 
boundary conditions of the Neumann type. 

The extension of our method to the numerical treatment of problems with linear or non-linear 
convection and from one to three dimensions will be presented in a series of forthcoming papers. 

DEVELOPMENT OF THE METHOD 

Let us consider that the exact solution u(x, t )  of equation (1) is approximated by the finite 
difference solution u; = u(xi ,  r,,), where x i  = h(i - 1) and t ,  = k(n - 1) with i = 1, 2,  . . . , I and 
n = 1, 2,  3, .. ., N .  Integrating equation (1) over x in the interval x i - l  < x < x i + l  using the 
prismoidal formula 

we have 

Integrating equation (7) over t in the inerval r , - ,  < t < t n + l ,  we obtain 

h h2 a4U 

3 ax2 6 ax4 
- (AuY:: + 4AuY'' + AuY?;) = 2ha i"l' [(+) + - (-) ] d t  + O(h5)  = 2hal + O(h5),  

where AuY+' = uY+' - uy- ' .  Considering that 
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and a4u/ax4 = ct-2a2u/at2, because of ( l ) ,  the integral I takes the form 

k h2 
3h2 6ctk 

-- - L,,(u;+ 1 + 4u; + u; - 1) + ~ L,, u;, 

where L, ,u l=  ul" - 2ul + uy- ' .  The last step of equation (10) was obtained by using the 
approximation 

2 

(2)")"' at -(a,).-' at (a%)" at2 6 at4 k 

2k3 (a4,). 
= 2k - + - - + O(k5)  = - L,,u; 

and neglecting terms of order equal to or higher than O(h2, k3). Substituting equation (10) into 
equation (8), we obtain the final three-level implicit scheme 

In constructing this equation, we have neglected terms of order equal to or higher than O(k2,  h2)  
and O(k4, h4). However, the von Neumann stability analysis below indicates that the scheme is 
unconditionally unstable for s = ctk/h2 > 0. This is due to the specific numerical coefficients b, 
f and & which multiply the respective terms of equation (12). 

Thus instead of equation (12)  we adopt the modified equation 

vh2 + - L,,ul, 
ctk2 

where the interelations between the parameters 6,  P and 9 are going to be determined later. 
Defining the mass operators as 

M, E (6, 1 - 26, S}, M ,  = {P,  1 - 2P, P } ,  (14)  

so that 

equation (13) can be written in the compact form 

The advantage of equation (16)  is that it is applied at every node, producing a tridiagonal system 
of equations of the form 
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with 

c1 = 6 - 2ps, c3 = 2s(l - 2P), c g  = 6 + 2ps, 

which can be solved using the Thomas algorithm. 
In studying below the accuracy of the method (16), we shall determine the functions p = p(6) 

and '1 = ~ ( 6 )  for which the truncation error is reduced to O(k4, h6). The best values of the 
parameter 6 will be determined from the required stability condition on s. 

Following our integration method, by expressing the functions ul in terms of MY" and MY-' 
via Taylor series expansions and strictly neglecting terms of order equal to or higher than 
O(k2, h4), we can produce the equation of the composite (COMP) scheme. 

TRUNCTATION ERROR AND STABILITY CONDITION 

We denote the diffusion equation (1) and its discretized form (13) by D(u) = 0 and F(u) = 0 
respectively. Substituting Ul, the exact solution of equation (1) at the node (i, n), into F(UY) = 0 
and expressing all the terms in Taylor series expansions about the node ( i ,  n), we produce the 
truncation error 

Thus, expressing iil+l and in Taylor series with respect to iil, we have 

where the last term is the remainder of the series with 0 < 0 < 1. Applying equation (19) in the 
case of Aunt ' I k ,  we have 

6h4 d4 AU 
12 ax4(  k ) i  +-- - ~~ + O(h6). (20) 

Similarly, expressing Ul" and Ul-' in Taylor series with respect to iil, we obtain the 
relation 

The quantities AUY", LXx@ and L,,Ul in equations (20), (21) and (16) are expressed in terms 
of the partial derivatives of iil using the Taylor approximations 
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Substituting these quantities successively into equations (20), (21) and (1 3) and neglecting terms 
of order O(km, h") with rn + v > 6, we obtain the final expression for the truncation error (18) as 

If the first two terms of (25) become equal to zero for 

the truncation error of our scheme is reduced to O(k4, h6). If in addition to equation (25) we put 
26 - f l -  q / 2  = 0, we obtain the relation 6 = (30s' - 1)/30(12s2 - 1). In this case the truncation 
error is reduced further to O(k4, h') and the method is subjected to the stability condition 
s d l/@, which imposes a severe restriction on the choice of k for a given h. 

The stability of the method is studied by applying a von Neumann analysis to the interior 
points. Thus the error 5; = u; - (ul)* between the solution u; of equation (13) and that which 
is actually calculated, (u;)*, is expressed as a finite Fourier series 

along the grid line i = 2, 3, . . . , I - 1 at the nth time level. Since equation (1) is linear, a single 
Fourier component is introduced in the sum (27), i.e. 5; = (G)"eJR)ei, where G = elk. It is noted 
that 5nf1/5n = G and (G)" represents G to the power n. The round-off errors associated with this 
scheme are propagated with equation (13). 

Hence, substituting (1 into equation (13), dividing the resulting equation by G"eRIei and 
putting x = cos 8, we obtain after some algebraic manipulations the equation 

aG2 + bG + c = 0 with G = (- b f JA)/2a, (28) 

where 

1 1 1 
3s 3s 3s 

b = - [8(1 - x)s2 - 2 ~ 1 ,  C = ~ [2(1 - X)S2 - 7.7 + E l ,  a = - [2(1 - x)s2 + ys + E], 

7 = 3 - 66(1 - x), 

A = $[ 12( 1 - x ) ~ s ~  - 12( 1 - X)E + y2]. 

F: = -6(6 - A) + (6 - &)(I - x), 
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For 6 d 
The stability requirement is [GI d 1 for all x. A detailed investigation indicates that if a 2 0 

and A 2 0, the coefficient b varies from positive to negative values as x increases from - 1 to 
+ 1. However, for b < 0 the inequalities - b + JA d 0 and - b - JA 2 0 do not hold when 
ac < 0. Thus G is given by equation (28) with - b + JA 2 0 or - b - JA < 0 and stability of 
the solution is achieved under the conditions 

we have E 2 0, y > 0 and a 2 0 for every x in the region - 1 d x d 1. 

O d G d 1  f o r 2 a 2  - b a n d a + b + c 2 0 ,  (30) 

- 1  < G < O  f o r 2 a > b a n d a + c > b .  (31) 

For 0 d G d 1 the conditions (30) always hold because 2a + b = 6(1 - x)s2 + ys 2 0 and 
a + b + c = 4s(l - x) 2 0. For - 1 d G d 0 the required conditions are satisfied if 

4 E 

3s 1 - x  
a + c - b = ~ - -  [-(1 - x)sz + E ]  2 0 or s2 < ~ with 1 - x # 0. (32) 

For x = 1 we have E 2 0, which is true for 6 d A. From (32) we have that (1 - x)s2 < 
E < E + ys/2, which shows that the condition 2a - b = -4(1 - x)s2 + 2ys + 4~ 2 0 is satisfied. 
In the case A < 0 the condition IGI = IGG*I = (c/a)’” < 1 is always satisfied when a 2 0. When 
- 1 d G d 0, the solution will have a decaying amplitude of oscillating sign as n + co. 

The inequality (32) represents the stability condition of our scheme and is written as 

- 5  - x 14 + x ‘ I 2  
sb [ 6- ( l - x ) + 3 O ( l - x ) l  ’ (33) 

Considering that the right-hand side of (33) becomes minimum for x = - 1, the stability 
condition takes the form 

Consequently the function S(6) determines the upper limit of the stability region for s. It is 
clear that the stability region increases as 6 decreases from to negative values. The variations 
in the functions v](6), p(S) and S(6) for some of the most interesting values of 6 are given in Table 
11. In practice our method behaves as an unconditionally stable implicit scheme upon choosing 
an appropriate value for 6. 

Table 11. Parametric values of q(6), b(6) and of S(S), 
which is the upper limit of the stability region in our 

method 

I -0.100 0.1 66 0- 166 0.387298 
-0.233 -0.033 0.161 0.532290 

-~ f -1.166 - 1.433 0.122 1.103026 
- 1  -2.166 -2.933 0.080 1.488847 

- 
-- :0 
- _  lo -0.500 -0.433 0.150 0.741619 
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NEW NEUMANN BOUNDARY CONDITION APPROXIMATION 

Before proceeding to the computational application of our scheme, we note that algorithm (13) 
is applied to internal nodes. At the boundary nodes the application of Dirichlet boundary 
conditions of the form (2)  does not create any difficulty, because the only values required are 
u; = C; and ur = C; at nodes 1 and 1 respectively. However, in the case of Neumann boundary 
conditions of the form (3) a knowledge of the solution outside the computational domain is 
required. In the case of a Neumann boundary condition du(0, t)/ax = g ( t )  at the node ( i  = 1, n), 
one of the following two formulae is used: 

u; - u; - - g" or u; = u; - hg", 
h 

u; - u; 
~~ - - gn or u; = u; - 2hg", 

2h 

(35) 

introducing a truncation error of order O(h) and O(h2) respectively. In both cases equation (35) 
or (36) is combined with a numerical scheme centred at the node (1, n) for the elimination of 
terms such as u; or u;. However, the use of (35) or (36) in conjuction with a numerical algorithm 
of higher accuracy results in the propagation of the corresponding error along the x-grid line 
for all later times, thus dramatically reducing the accuracy of the method. 

To avoid the previous disadvantageous, we present a new technique for the implementation 
of a Neumann boundary condition. Integrating equation (3) using the formula (6), we have 

h au 
du = u i + l  - u i P l  = - [(() + 4(%) 

3 dx i + l  ax + (a,) ax i - ,  ] 
= 3 [6(g)i  + hi(%) ax + O(h4)] + O(h5). 

Substitution of d2u/dxdt = cd3u/dx3 into equation (37) yields the final formula 

(37) 

with a truncation error of O(h5). The term (du/dx); is the known boundary condition at the node 
i. If we assume that there are Neumann boundary conditions at the end points of the interval 
x1 I x 5 x ,  given by 

their corresponding approximate formulae at x 1  and x, are written via (38) as 

Using these relations, the values of u; and 
the interior points. 

are eliminated from the algebraic equations of 
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The method which we have developed above can be generalized to the case of more 
complicated partial differential equations than the diffusion equation. 

RESULTS AND DISCUSSION 

Numerical results have been obtained with our PH scheme using Dirichlet and Neumann 
boundary conditions. These results are compared with those obtained with the aforementioned 
(see Introduction) explicit and implicit schemes as well as with the corresponding exact 
solutions. 

We begin our study by considering the transient heat conduction along an insulated 
rod which is in contact at its two ends with two hot reservoirs. The temperature u(x,  t )  governed 
by equation (1) is subject to Dirichlet boundary conditions 

u(0, t )  = u(1, t )  = 100 "C, (41) 

with initial temperature u(x, 0) = 0 "C and thermal diffusivity tl = 0.01. The exact solution of 
the problem is given by2 

The RMS error between the exact and the numerical solution is evaluated from the formula 

Applying our method to ul with n 2 3, we calculate u! from the initial conditions and u! from 
the application of the COMP method. The variations in u(x ,  t )  along the rod at t = 4.5 and 12.5 
are shown in Figure 1. The accuracy of our PH scheme (13) is estimated by studying the 
calculated RMS errors (Table 111) at t = 12 for grids with h = 0.05, 0.1 and 0.2 and parametric 
values s = 0.166, 0.3,05, 1 and 6 = $, -$, -& -+, - 1. These results were obtained with the 
initial condition defined by the exact solution (42) at t = 4.5 in order to avoid errors in 

10 0 

U 

50 

0 X 
~~ 

0.5 

Figure 1 .  Variation in u(x, t )  subject to Dirichlet boundary conditions u(0, t )  = u(1, t )  = 100 "C at t = 4.5 and 12.5 
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Table 111. Estimation of the accuracy of our method subject to the Dirichlet 
boundary conditions (41) at t = 12 

RMS RMS RMS 
S 6 (8 = 0.2) (h  = 0.1) ( h  = 0.05) r 

0.000480 
0.000557 
0.000780 
0.001576 
0.0025 18 

0.0008 1 5 
0.000822 
0.001277 
0.002783 
0.00443 3 

0.763904 x 
0.853179 x 
0.105388 x 
0.170252 x 
0.317568 x 

0.105364 x 
0.122489 x 
0.160599 x 
0.281840 x 
0551824 x 

0.127209 x 5.9 
0.140273 x 5.9 
0.167693 x 5.9 
0.242563 x 6.1 
0.369892 x 6.4 

0.165030 x 5.9 
0.190026 x 6.0 
0.241909 x 6.0 
0.381190 x 6.2 
0.614881 x 6.4 

0.5 & 0.040334 0.000108 0.0001 68 - 0.6 
-- ' 0.013143 00001 14 0.182929 x 5.9 
_ _  j0 0.008127 0.000133 0.208336 x 6.0 
-- 0.014768 0.000193 0.276851 x 6.1 
- 1 0.23259 0'000325 0.392451 x 6.3 

1 .o 1 0.210527 0.016112 0.254 1 3 1 - 3.9 
_- 0.183352 0.002857 0.00 1 8 52 0.6 
-- 0.154849 0.001036 0~0000 1 8 5.8 

- 1 0.164526 0.001791 0.000026 6.0 
-- f 0.146756 0.001271 0.00002 1 5.9 

implementing the boundary conditions and for comparison with other similar results in Table 
V. The approximate convergence rate expressing the ratio of the RMS errors for h = 0.1 and 
0.05 is given by2 

r = ln(RMSh,o.,/RMSh,o.o,)/ln 2 (44) 

and is also presented in Table V. We observe that the accuracy of the scheme is increased even 
for large values of h as s decreases. For a specific value of s the accuracy of the method increases 
upon choosing a value for 6 for which the upper limit of the stability region S(6) is nearer to s. 
On the other hand, as s increases to values larger than S(6)  for a specific value of 6, instabilities 
are introduced in the numerical solution, yielding large RMS errors. This is more pronounced 
when s = 1 and 6 = A, for which S(6) = 0.387, yielding a negative r .  However, these instabilities 
are reduced smoothly as the step h increases. It is clear that for s I 0 3  the error behaves like h6. 

In Table IV the error distributions (u - UJ are given at t = 12.5 for grids with h = 0.1 and 
0.2 and parametric values s = 0.3, 1 and 6 = A, -f. For s = 1 the error is larger at 6 = & than 
that at 6 = -4 near the boundaries because of the strong induced instabilities at 6 = A. For 
s = 0.3, which is well within the stability range determined by 6 = & and -& the error becomes 
larger at the middle of the rod. 

The accuracy of our scheme is compared with that of the implicit schemes FDM4TH,  
FEM4TH and COMP and with the accuracy of the explicit schemes FTCS and 3L4TH in 
Table V. All these methods have been described in the Introduction. The results of the methods 
with an asterisk have been taken from Reference 2, while the results of the PH and COMP 
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Table 1V. Error distribution ( u  - u,,), of our solution subject to the Dirichlet boundary conditions (41) at 
t = 12.5 

x = o  0.2 0.4 0.6 0.8 1 

s = l  6 = '  0 -2.238 x lo-' 1.453 x lo-' 1.453 x lo-' -2.238 x 0 ' 30 
h = 0.1, 6 = -! 2 0  9.511 x 1.882 x 1.882 x 9.511 x 0 

s = 1 , 6 = L  30 0 -3.456 x lo - '  1.162 x lo-'  1.162 x lo-'  -3.456 x lo-'  0 
h = 0.2, 6 = -+ 0 -7.621 x lo -*  2.425 x lo- '  2.425 x lo-'  -7.621 x lo-' 0 

= 0.3, 6 = r 0 7.542 x 1.374 x 1.373 x lo-' 7.531 x 0 
h = 0 . 1 , 6 =  - 1  1.117 x 3.620 x 3.619 x lo-' 1.116 x 0 

30 

2 0  

s = 0.3, S = & 0 8.717 x lo-" 5.748 x 5.748 x 8.716 x 0 
h = 0.2, 6 = - 4  0 8.306 x 3.589 x 1 O - j  3.589 x lo-' 8.306 x 0 

methods have been obtained by us. For s = 1 and h = 0.2 the PH scheme gives on average an 
error 37% smaller than the error of the FEM schemes and 81% smaller than the error of the 
FDM implicit schemes. For s = 0.41 and h = 0.2 the PH scheme gives on average an error 65% 
smaller than the error of the FDM and COMP schemes and 99% smaller than the error 
of the explicit schemes. However, in all cases, as h decreases to 0.1, the average error of our 
scheme is about 100% smaller than the corresponding error of all other implicit and explicit 
methods. 

Table V. Comparison of the accuracy of our PH scheme with that of other implicit and 
explicit schemes subject to  the Dirichlet boundary conditions (41) at s = 1 and 0.41 

RMS RMS RMS 
Method 6, P ( h  = 0.2) ( h  = 0.1) (h  = 0.05) r 

Implicit schemes at s = 1 and t = 12.5 with t in i l  = 4.5 

FDM-4TH* 6 = 0, P- (y  = 1) 2.367 0.1246 0908 129 
FEM-4TH* 6 = 4, P + ( y  = 1) 1.395 0.09269 0.0059 12 
F D  M -4TH * 6 = 0, P - ( y  = 0) 0.2393 0.01526 0.001053 
FEM-4TH* 6 = i ,  /I+(? = 0) 0.2393 0.01522 0.000897 
COMP 6 = -1 12' P = 0.5 0.239287 0.015235 0.000974 

6 = -1 0.154849 0.001036 0.000018 
PH 6 =  -- P 0.146756 0,001 27 1 0.00002 1 
PH 

- 
3.9 
4.0 
3.9 
4.1 
3.9 
5.8 
5.9 

Implicit and explicit schemes at  s = 0.41 and t = 9 with tinit = 2 

FTCS* exp. 1.2440 0.30230 0.07550 
3L-4TH* exp. y = l  0.073470 0.02290 0.001400 
FDM-4TH* imp. 6 = 0, P- (y  = 0) 0.03718 0402407 0.000206 
COMP 6 = 12* I / l = O . 5  0.03585 0402378 O~ooOo150 

6 =  -r 0.009774 OW0077 O.Ooo00 1 1 
0.006532 0.000 1 12 0.00000 16 

PH imp. 
6 =  -- 

0.020433 0.000274 0~0000030 P PH imp. 
PH imp. 6 =  -- 

- 
2.0 
4.0 
3.5 
4. I 
6.0 
6.1 
6.5 
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Now we consider the solution of the diffusion equation (1) in the interval 0 1  < x < 1 with 
initial value 

u(x) = 2x + 4 cos(O5x~c) at t = 0 (45) 

and subject to Neumann and Dirichlet boundary conditions which are given respectively by 

and u = 2 at x = 1. The exact solution of the problem, 

u,, = 2x + 4 c o s ( ~ ~ ~ ~ x ) e - ~ ' ~ ' * ) ~ ' ,  (47) 

will be used for the calculation of the RMS error of the numerical solution. Numerical solutions 
of the above problem have been obtained with our scheme by applying the algebraic expressions 
(36) and (40a) successively for the implementation of the Neumann boundary condition (46). 
The exact solution (47) has been used to provide the initial solution at t = 5.2. The variations 
in u(x, t )  along the rod at t = 5.2 and 12.8 are shown in Figure 2. 

The results for the accuracy of our scheme combined with the corresponding second- and 
fourth-order boundary condition formulae (36) and (40a) are given in Tables VI and VII 
respectively. The RMS errors have been calculated for grids with h = 0.05625, 0.1 125 and 0.225 
at t = 15.325 and for the indicated values of the parameters s and 6. We observe that for each 
value of h the variation in the RMS error as s decreases is very small. It is clear that as s increases 
to values larger than S(6)  for a specific value of 6, the induced instabilities of the solutions are 
much stronger than the corresponding instabilities in the case of Dirichlet boundary conditions. 
However, the most important conclusion arising from Tables VI and VII is the dramatic 
reduction in the error of the numerical solution, which is due to the application of our 
fourth-order formula (40a) for the Neumann boundary condition. 

The error distributions (u - uex)y of our method combined with the boundary condition 
formulae (36) and (40a) are given in Table VIII at t = 15.325 for s = 1 and 6 = -4. Clearly, 
upon applying the expression (40a), we obtain a more evenly distributed truncation error than 
that obtained by applying the expression (36). 

Finally, in Table IX the accuracy of our scheme combined successively with the boundary 
formulae (36) and (40a) is compared with that of the aforementioned implicit and explicit schemes. 
The results have been obtained with the initial condition given by the exact solution (47) at 
t = 5.2 and 0.8 for comparison reasons and in order to avoid errors in implementing the initial 

t r  5 . 2  . 

1 
I t, 12.8 - 

2 \ 
0.1 x 0.5 1 

Figure 2. Variation in u(x)  subject to Neumann and Dirichlet boundary conditions ut(0.1, t )  = g(t )  (equation (46)) and 
u(1, t )  = 2 "C respectively at t = 5.2 and 12.8 
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Table VI. Estimation of the accuracy of our method subject to the Neumann 
boundary condition (46) with the formula (36) of order O(h’) at t = 15.325 

RMS RMS RMS 
S 6 ( h  = 0.225) ( h  = 0.1 125) ( h  = 0.05625) r 

~ ~ ~ ~ 

1 
6 2.0 ~ - io 0.00277887 0.00062989 0.1512582 x l ow3  

-$ 0.00277920 0.00062990 0.1512583 x 2.0 

_ -  f 0.00278193 0.00062993 0.1512588 x 
-- 0.00277994 0.00062991 0.1512584 x 2.0 

2.0 
- 1  0.00278403 0.00062997 0.1512593 x 2.0 

0.3 - 0.00263299 0.00063573 0.1509789 x 2.0 
2.0 
2.0 
2.0 

-1 0.00262530 0.00063559 0.1509768 x lo-’ 2.0 
- 1.24 

2.0 
2.0 
2.0 

- 1 0.00271905 0.00062148 0.1512446 x 2.0 

-_ 310 0.00263365 0.00063572 0.1509787 x 
_ -  lo 0.00263223 0.00063571 0.1509785 x 
_ -  f 0.00262860 0.00063566 0.1509778 x 

_-  310 0.00273437 0.00062258 0.1512538 x 
-- ” 0.00274923 0.00062207 0.1512528 x 
_ -  f 0.00273624 0.00062185 0.1512496 x 

_-  310 0.00252853 0.00086052 0.2909138 x 10 
-- io 0.00247875 0.00061606 043958980 x lo-’ -3.9 
- _  f 0.00240957 0.00063866 0.1512088 x 

0.5 - 0.00269564 0.00070591 0.3767557 x 10 

- 20.8 
- 15.0 

2.0 
- 1 0.00236161 0.00063876 0.1511779 x 2.0 

1 .o - ’ 0.00256303 0.00238894 0.4576342 x lo4 

Table VII. Estimation of the accuracy of our method subject to the Neumann boundary 
condition (46) with our formula (40a) of order O(h4) at  t = 15.325 

RMS RMS RMS 
S s (h  = 0.225) (h  = 0.1 125) ( h  = 0.05625) r 

1 
6 I 0.165876 x 0.994155 x 0.600231 x 4.0 

4.0 
4.0 
4.0 

- 1  0.121604 x 0.919308 x 0.589290 x 4.0 

_- 3p 0.162884 x 0.989668 x 0.599539 x 
_ -  go  0.156553 x 0.980555 x 0.598148 x 
_ -  f 0.140132 x 0.956944 x 0.594641 x 

0.3 I 0.196157 x _- 3p 0.201324 x loW4 
_ -  lo 0.213097 x 
_ -  f 0.244916 x 

-~ 3p 0.345528 x 
-~ j 0  0.417189 x 
-~ f 0.589444 x 

-1 0.283345 x 

0.5 1 0.269205 x 

-1 0.779329 x 

0.104160 x lo-’ 
0.104971 x lo-’ 
0.106625 x 
0.110945 x 
0.117931 x lo-’ 
0.121158 x lo-’ 
0.127991 x lo-’ 
0.136676 x 
0.159325 x lo-’ 
0.196093 x lo-’ 

0.605916 x 
0.607171 x 
0.609687 x 
0.616046 x 
0.625774 x 

0.255485 x lo-’ - 
0.642762 x 
0.655519 x 
0.687880 x 
0.737659 x lo-’ 

4.1 
4-1 
4.1 
4.2 
4.2 

4.4 
4.4 
4.5 
4.7 

11 

- 19.5 

_ -  lo 0.000161 0.374454 x 0.495437 x lo-’ - 0.4 

-1  09CM3377 0.672503 x lo-’ 0.143286 + 5.5 

1 .o - 0.959651 x 0.524021 x lo-’ 4.024087 
-_ 3p 0.000071 0.331457 x lo-’ 0.021447 - 1.2 

_ -  4 0.000288 0.491311 x 0.118564 x 5.4 
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Table VIII. Error distribution (u  - ueJi of our solution subject to the Neumann boundary condition (46) 
with the formulae (36) and (40a) at t = 15.325 

Method and 
boundary 
conditions h x = 0.1 0.325 0.550 0.775 1 

PH +(36) 0.05625 0.342 x 0.1170 x 0.7643 x 0.2561 x 0 
s = l  0.1 125 0.134 x lo-’ 0.6909 x 0.2981 x 0.9910 x 0 
6 =  -1 2 0.225 0.456 x 0-’ 0.2718 x lo-’ 0.8618 x 1 O - j  0.1847 x 0 

PH + (40a) 0.05625 -0219 x -0.1487 x -0.9056 x lo-’ -0.4253 x lo-’ 0 
s = l  0.1125 -0.773 x -0.6283 x lo-’ -0.4442 x lo-’ -0.2301 x 0 
6 =  -1 0.225 -0.415 x -0.3774 x -0.2795 x -0.1483 x 0 

condition. For s = 1 and h = 0225 the PH scheme in conjuction with the formula (36) gives 
on average an error 80% smaller than the error of the FMD implicit schemes and 7% larger 
than the error of the COMP scheme. However, our scheme with the formula (40a) instead of 
(36) produces an error 100% smaller than the average error of all other methods. For the same 
parameters and using the boundary formula (40a), our scheme gives a truncation error 49% 
smaller than the error produced by the corresponding COMP scheme. This error becomes 
smaller by about 86% at h = 0.1125 and 96% at h = 0.05265 than the corresponding errors 
produced by the COMP method. Similar results are obtained for s = 0.3. 

Table IX. Comparison of the accuracy of our PH scheme with that of other implicit and 
explicit schemes subject to the Neumann boundary condition (46) with the formulae (36) and 

(40a) at s = 1 and 0.3 
~~ ~~ 

RMS RMS RMS 
Method 6, P (h = 0.225) (h = 0.1 125) (h = 0.05625) r 

Implicit schemes at s = 1 and t = 15 with tinit  = 5.2 

FDM-4TH* 
FDM-4TH* 
COMP + (36) 
COMP + (40a) 
PH + (36) 
PH + (36) 
PH + (40a) 
PH + (40a) 

~ 

0.01478 
0.009 12 
0.00226 1 
0.000569 
OW2409 
090236 16 
0.00028 8 
0.000377 

OQ0539 
0.00233 
OQ006 1 3 3 
0.0000 3 5 2 
0.0006386 
09006387 
0.000005 
0.000006 

~~ 

0.00 14 1 
0.00053 
0.000 1547 
0.0000022 
0.0001512 
0~0001511 
0.000000 1 
0~000000 1 

1.9 
2.1 
1.9 
3.9 
2.0 
2.0 
5.4 
5.5 

Implicit and explicit schemes at s = 0.3 and t = 9 with tinit  = 0.8 

FTCS* 0.00 1753 Oao0423 5 0.000 1064 
3 L-4TH * 0.004244 0.0009 142 0.0002 144 
COMP + (36) 6 = L, I’ = 0.5 0.002659 OW06455 O.OOO15 14 

s =  -1 0.00267 12 0.0006467 0.0001 5 15 
0.0026673 0.0006466 0.000 1 5 1 5 P a =  -~ 

0~000022 0.00000 1 1 0~00000006 t s =  -- 
PH + (40a) b =  -- 0.000026 0~00000 1 5 0~00000006 P PH + (40a) 

COMP + (40a) 6 = A. P = 0.5 090OO3 6 0~0000023 0~000000 14 
PH + (36) 
PH + (36) 

- 
2.0 
2.1 
2.0 
4.0 
2.0 
2.0 
4.1 
4.2 
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It is obvious that the incorporation of a discretized formula of low accuracy for the 
implementation of a Neumann boundary condition drastically reduces the effectiveness of an 
otherwise highly accurate numerical method. However, our highly improved boundary condition 
formula (40a) in conjunction with our numerical scheme yields highly accurate solutions with 
truncation errors of order O(h6). 

The generalization of our numerical method and of our formula for the Neumann boundary 
condition to the solution of convection-dominated and multidimensional problems will be 
presented in a series of forthcoming papers. 
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